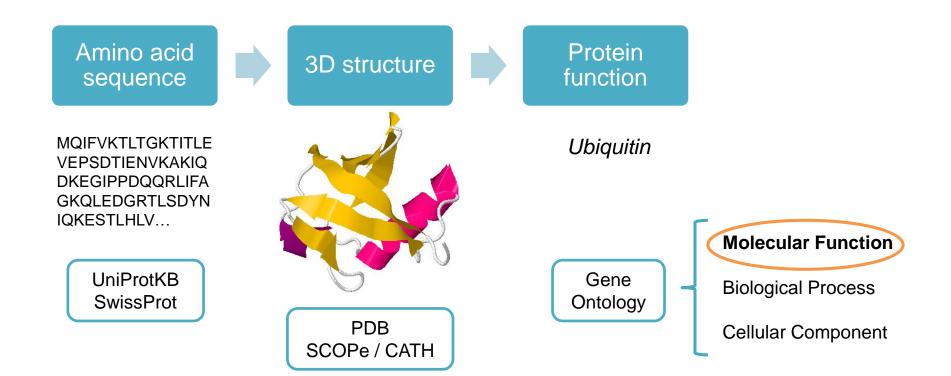


UNIVERSIDAD DE GRANADA Unsupervised protein embeddings outperform handcrafted sequence and structure features at predicting molecular function

> Amelia Villegas-Morcillo ISMB 2020

Automatic function prediction



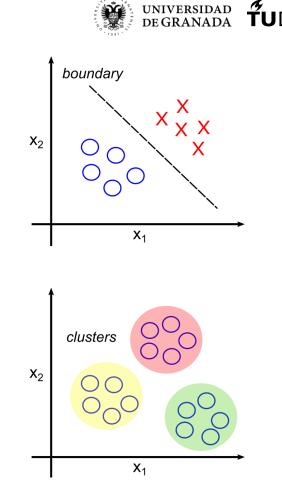
Automatic function prediction

Supervised training

- Value / Class guided
- Dependent on the task
- Limited amount of labeled proteins (thousands)

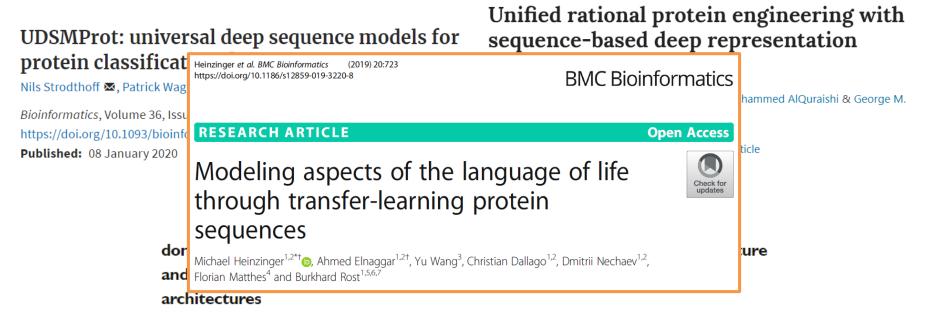
Unsupervised pre-training

- Self-guided
- Independent of the task
- Millions of (unlabeled) sequences
 - >175M UniProtKB
- Adapt to the task → Fine-tuning / Transfer-learning



Language models on proteins

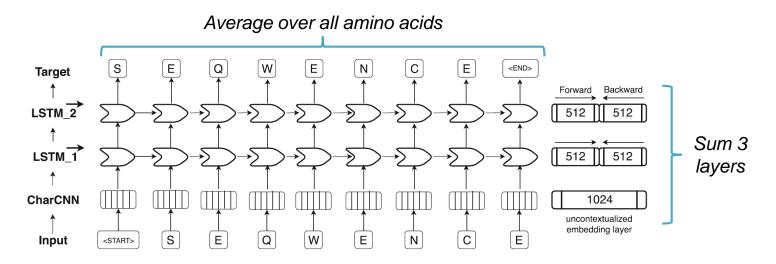
Article Published: 21 October 2019

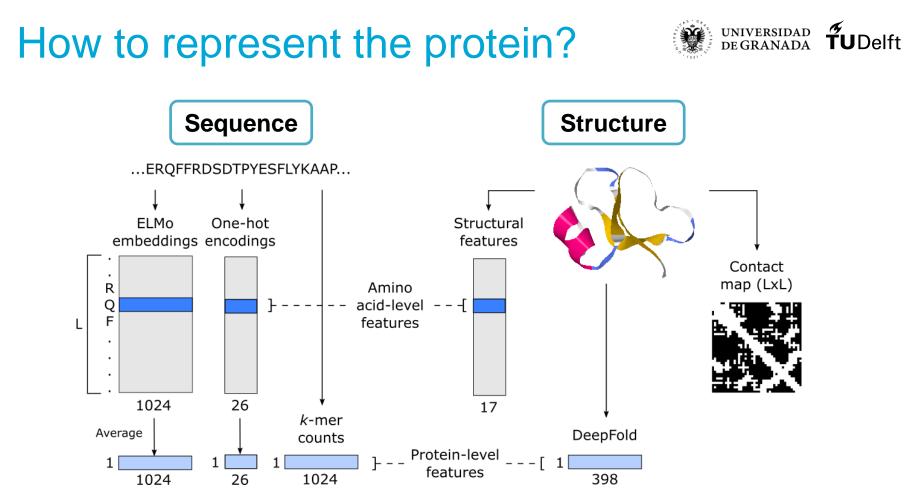


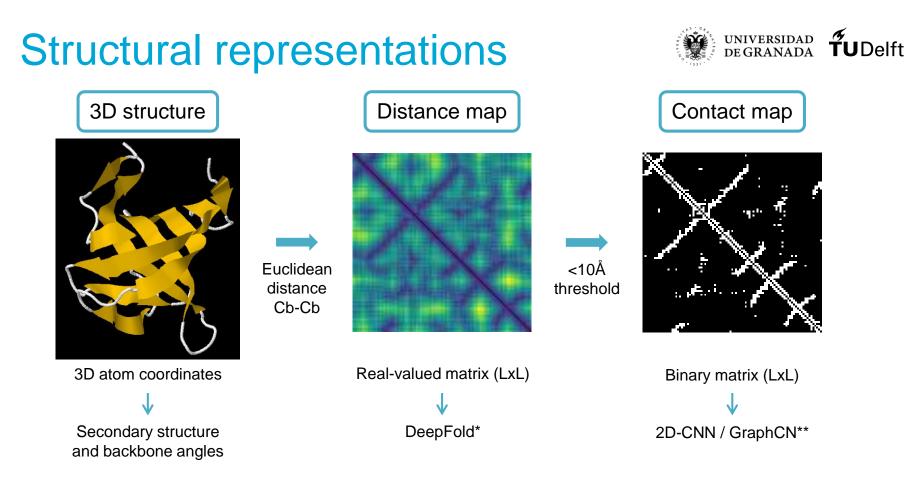
Damianos P. Melidis, Brandon Malone, Wolfgang Nejdl doi: https://doi.org/10.1101/2020.03.17.995498

ELMo embeddings

- ELMo model from NLP
 - Predict the next amino acid in a sequence given all previous ones
- SeqVec* model trained on UniRef50 (33M proteins)

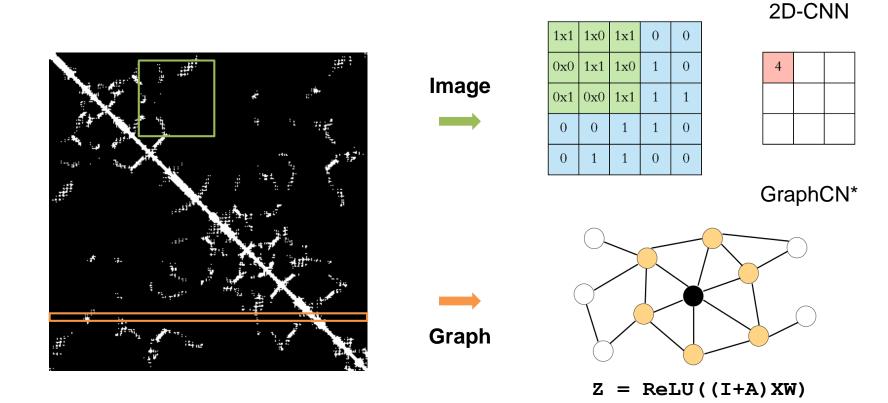






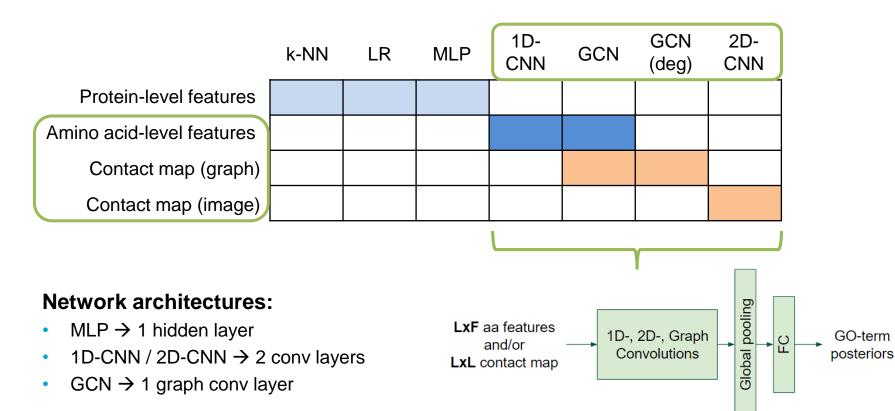
* Liu et al. (2018). Learning structural motif representations for efficient protein structure search. *Bioinformatics*. ** Gligorijevic et al. (2019). Structure-Based Function Prediction using Graph Convolutional Networks. *bioRxiv*.

Contact map processing



* Kipf and Welling (2019). Semi-supervised classification with graph convolutional networks. ICLR 2017.

Function prediction methods



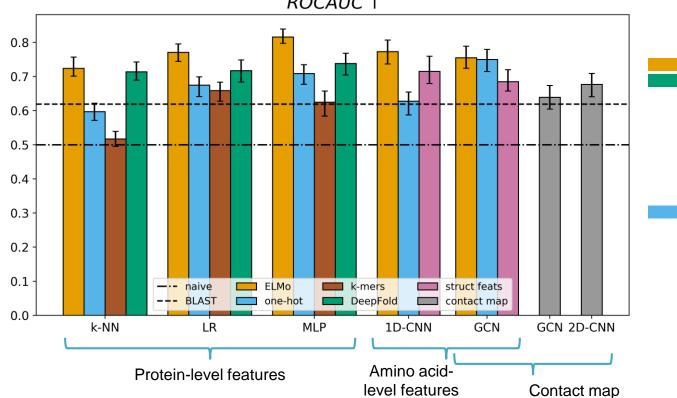
10

PDB dataset

- Protein structures annotated with non-computational codes
 - MFO, BPO, CCO
- Train / validation / test split
 - Training
 - Validation
 - − Test (max 30% identity) \rightarrow
- \rightarrow ~9k, ~8k, ~7k proteins, respectively
- → ~1k proteins
 - ~400 proteins

- GO terms
 - ~250 for MFO and CCO
 - ~1k for BPO

MFO prediction results



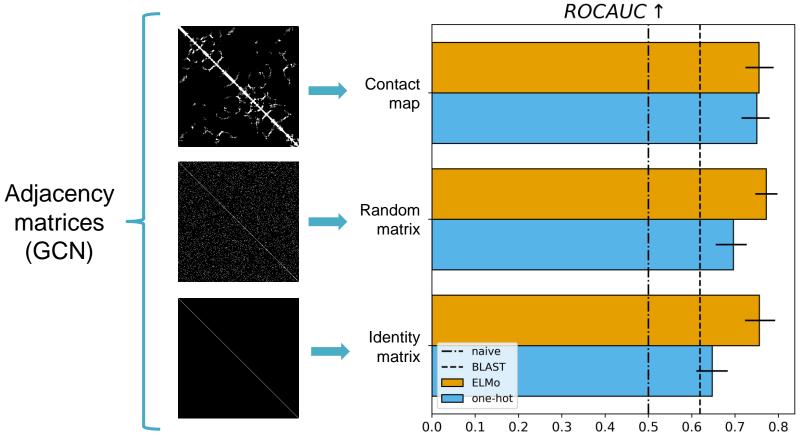
ROCAUC ↑

Observations

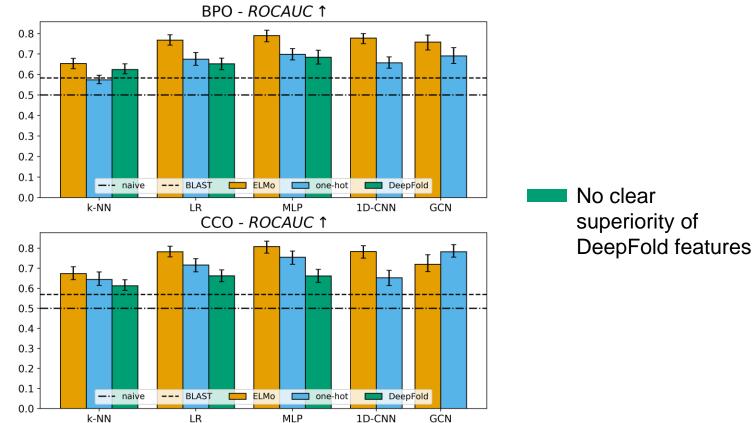
Pre-trained features (ELMo and DeepFold) outperform other representations

Contact map helps when using one-hot features (GCN)

Changing the graph



BPO / CCO results



MFO terms specificity

- Larger dataset with sequences from SwissProt:
 - ~64k training, ~8k validation and ~3.5k test proteins
 - 441 MFO terms
- ELMo embeddings vs one-hot encodings
- Sequence-based models (no structure):
 - Protein-level \rightarrow k-NN, LR, MLP
 - − Amino acid-level \rightarrow 1D-CNN
- Top method \rightarrow MLP with ELMo (ROC AUC=0.87)

MFO terms specificity

k-NN with ELMo > 1D-CNN with one-hot (in ROC AUC)

0.131 0.4 39 62 40 9 89 88 81 21 10 2 ROC AUC of IDCNN_Ih - kNN_E 0.3 0.2 0.1 0.0 -0.1-0.2 -0.3 -0.017 -0.077 -0.092 -0.027 -0.042 -0.05 -0.037 0.025 0.033 -0.014 -0.4 10 1 2 3 Δ 5 6 7 8 9 Maximum Path Length to Root

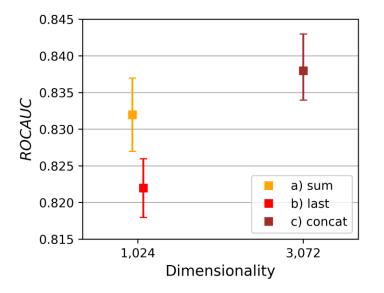
Further supervised training (1D-CNN) helps for more specific terms

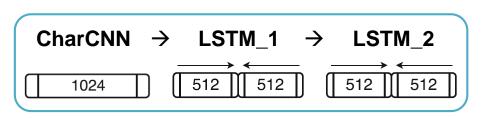
ELMo layers performance

 SeqVec model layers

 (averaged over all amino acids, protein-level)

- Logistic Regression results
 - a) sum \rightarrow CharCNN + LSTM_1 + LSTM_2
 - b) last layer \rightarrow LSTM_2
 - c) concat \rightarrow [CharCNN, LSTM_1, LSTM_2]





CAFA3 results

Method	Features	Fmax	
Naive*		0.33	
BLAST*		0.42	
k-NN	Protein-level	0.50	
LR	ELMo	0.51	 MFO
MLP	embeddings	0.55	Rank 5th out of 146 methods
1D-CNN	Amino acid-level ELMo embeddings	0.53	
DeepGOCNN	Amino acid-level one-hot encodings	0.43	 k-NN using ELMo:
CAFA3 rank 1*		0.62	 BPO: Fmax=0.34 (44/146)
CAFA3 rank 2*		0.61	– CCO: Fmax=0.60 (10/146)
CAFA3 rank 3*		0.61	
CAFA3 rank 4*		0.61	
CAFA3 rank 5*		0.54	* Zhou et al. (2019). The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of

genes through experimental screens. Genome Biology.

- Pre-trained features outperform hand-crafted representations
- ELMo contain functional information
 - Not only for MFO, but also for BPO and CCO
- Adding structure information to ELMo does not improve performance
 - It helps with simpler representations as one-hot encodings
- Supervised training helps for more specific terms
- Systematic comparison with other protein sequence embedders

UNIVERSIDAD DE GRANADA Acknowledgements

- Stavros Makrodimitris
- Marcel Reinders
- Roeland van Ham
- Victoria Sánchez
- Ángel Gómez
- Elvin Isufi
- Chirag Raman
- Irene van den Bent

Keygene N.V., The Netherlands Spanish MINECO/FEDER Project TEC2016-80141-P and FPI grant BES-2017-079792